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@E_{'f[ Definitions of CHIMERA

* asingle organism composed of genetically
distinct cells

— Proposed methodology is a hybrid of the AIRS
approach with Optimal Estimation

 something that exists only in the imagination and
Is not possible in reality

— features of the algorithm we have proposed has been
an unattainable vision for many, many years

* a monstrous fire-breathing hybrid creature
composed of the parts of more than one animal

— Hopefully not



AR, What are some guiding principles of a

o VL climate product for retrievals?

* Requires reprocessing of full dataset

— By extension, this implies (to me) that AIRS/AMSU and
CrIS/ATMS have same spectroscopy and retrieval method
* Alternatively we could make the radiances look the same

— IASI/AMSU/MHS in the future (next call?)
— Incorporate MODIS, AVHRR, and VIIRS in the future
 Community accepted error estimates and/or product
characterization (a.k.a., averaging kernels)
— Requires formal error covariance of the a-priori
— ... and formal error covariance of the final products.

A well characterized a-priori suitable for multi-
instrument time series



oz What we plan to do

\

* Retain the good components of the AIRS science team algorithm
(see my “Thoughts on Version 7” presentation on Nov. 15, 2012 —
also copied at end of this presentation)

— Sequential solution using subsets of selected channels
— Vertical basis functions (not necessarily trapezoids)
— Geophysical co-variance as part of obs-cal error covariance matrix
— Use of all sounding assets (microwave and IR imagery in future).
— Cloud clearing

 Modify the code to formally propagate the error

— Modify each retrieval step to have a formal a-priori state and
associated covariance

— Propagate the error covariance from step to step
— Output error covariance (T, q) or averaging kernel (trace gases)
* Note: outputting one of the two allows derivation of the other
* Allows graceful degradation with decreased information content
— Avoid ad-hoc adjustments and “switches” in product character



Use the NOAA-Unique CrIS/ATMS Processing
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(72 System (NUCAPS) code as a starting point

* AIRS/AMSU, IASI/AMSU/MHS, and CrIS/ATMS
are processed with literally the same code.

Extremely fast compared to other approaches (1 CPU for CrIS/ATMS)
Same underlying spectroscopy (as best as we could do)

Instrument agnostic: specific items are file-driven, not hardwire
Code is backward and forward (as much as possible) compatible.

Retrieval components are programmable via namelists (can quickly
compare retrieval enhancements and/or methodologies).

Operational code is a “filtered” version of the science code.

* Can use it perform interesting experiments

AIRS + ATMS
Jennifer Wei’s O3 tropo-pause relative climatology/retrieval
Etc. etc.

e Can form the basis for other team contributions



Use the NOAA-Unique CrIS/ATMS Processing
System (NUCAPS) code as a starting point

* Note that NUCAPS, by design, is the AIRS
Science Team Algorithm

— It is not my algorithm, it is only my code

— It is based on the original AIRS science team code

* Originated from Joel Susskind’s science code delivery to JPL (circa 1998) and
maintained changes from GSFC (through v5)

* Worked with Larrabee Strow to obtain SARTA for IASI and CrIS and integrate
SARTA into the retrieval framework.

* Worked with Phil Rosenkranz to integrate and maintain the microwave
components
— Very excited to work with Bjorn’s team to continue this work and use his results
* Worked with Mitch Goldberg to integrate and maintain the regression

components

— In the operational environment the neural net approach was demanding of operational
resources, difficult to simultaneously maintain operationally for Aqua, Metop-A, Metop-B,
and NPP/JPSS, and worried about it being over-trained w.r.t. global eigenvector regression
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e Choice of a-priori is critical

— Want a prior that contributes unique information in low
information content domains.

— Want a prior that the climate community considers to be well

behaved
Climatology Simple and constant, see retrieval skill
Microwave only O-E w/ clim With ATMS has high IC, but not Aqua
NCEP Reanalysis R1 (w/o satellite), f(time) for others
ERA-Interim System changes with time, good q(p)
MERRA-2 Consistent reprocessing

* Prior for trace gases will be simple climatologies

— Except ozone, where we will use tropopause relative
climatology (Wei 2010 JAOT v.27 p.1123)



Summary of top level difference of some
- I7Z) operational systems with CHIMERA

I m

AIRS version.5 Regression None

AIRS version.6 AST Neural net None Yes
NOAA IASI AST Regression None No
NUCAPS AST Regression None No
CRiMSS EDR O-E ATMS ret Climatology No

CHIMERA O-E Regression Reanalysis Yes



(72 Validation

A\,

* "extraordinary claims require extraordinary evidence" Carl
Sagan

— We should avoid making algorithm choices using the same data
sets used in “training” of algorithm or QC components.

— We should partition improvements into those from null-space and
those from physical measurement concepts

* Should the goal be to use IR everywhere?

— Cloud clearing is known to fail in regions of high moisture or
surface variability.

* Error estimates, including off-diagonal components, will be significantly
improved with error propagation through the retrieval steps and use of
stable a-priori

— O-E allows for a graceful transition from infrared-dominated to
microwave-dominated products in information limited domains.

* Error propagation and averaging kernels explicitly describes the

information content of the sounding information w.r.t. the prior
information content.
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7L Validation using in-situ

 We will inter-compare CHIMERA with NUCAPS and AIRS v.6 in order
to verify the characteristics of the product

— These datasets ensure independence of any training (e.g., bias
corrections, a-priori)

— Inter-compare with other methods (e.g., Susskind, Moncet, Irion)

Ret. Variables

DOE ARM CART TWP, SGP, NSA, ~500 RS-92/y, SST, T, WV
mobile starting 2012

AEROSE Tropical mid-lat ~100 RS92 and ~25 SST, T, WV, O3
Atlantic 03

COSMIC GPS Global Yearly UT T, tropopause

SHADOZ Southern Hemis. 1998 — present 03

MOSAIC/IAGOS Northern Hemis. 1996 — present WV, CO, 03

HIPPO Pacific Ocean 2009-2011 CO, CH4, CO2, N20

10



P Validation with respect to short-term
e P variability indices (year.2)

e Verify algorithm performance with respect to
existing community reference networks

— NCDC ERSST/ICOADS (*)

— NOAA CPC (4)
Variability Mode Observed Variables AIRS/CrIS overlapping
domain
El Nino Southern SST (*), Total Cloudiness (*),  2012-present
Oscillation (ENSO) T(*), q(*), OLR(+) Tropical Ocean
Pacific Decadal Oscillation ~ SST (*), Total Cloudiness (*),  2012-present
(PDO) T(*), a(*), OLR(+) Global
Atlantic Multi-decadal SST (*), Total Cloudiness (*),  2012-present

Oscillation (AMO) T(*), q(*), OLR(+) Global

11



Evaluate with short-term climate
sensitivity indices (year.3)

* Assess the ability of this algorithm to measure
short-term climate feedbacks

AR=dR/dTls ATls=[0R/OTls +IR/q dq/0Tls +IR/
dU ar /oTls +...]ATLs +[¥]

* Use forward model to compute radiative kernels,
(dR/dX terms)

* Use CHIMERA products to compute the feedback
terms, (dX/dTs terms)

* Verify that X=g and X=OLR over produces
physically correct over diverse geophysical
regimes for both Aqua and NPP



CHIMERA satisfied the Suomi-NPP Science Team’s

recommendations for a science-quality algorithm

Capable of processing CrlS full-resolution spectra (Gambacorta 2013 IEEE GRSL);

Will produce a satellite climatology for temperature, water vapor, and trace
gases from Aqua/AIRS/AMSU and Suomi-NPP CrIS/ATMS
— also capable of being extended to IASI/AMSU/MHS
— however, that extension was not being proposed here
Retrieval approach that elucidates climate signals without bias;
Designed, from the beginning, to be product-centric rather than sensor-centric;

Outputs the full-geophysical state and that output can be used to compute
radiances;

— Products include surface, cloud, O3, CO, CH4, CO2, SO2, HNO3, and N20, products in addition
to cloud cleared radiances, temperature and moisture;

Uses an open framework.

— other researchers can link other algorithms for the core products and new algorithms for
ancillary products (e.g., cloud microphysical products, trace gases, etc.).

Could add new products
— Ammonia (NH3), Formic Acid (HCOOH), and Peroxyacetyl Nitrate (PAN)
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Constraints and Assumptions for
the AIRS Science Team (AST)

Algorithm
 Must be able to process, € 8—to-end (using <10

250 MHz CPU’s in 2002)
— NUCAPS does ~1 retrieval per 0.12 seconds on modern CPUs
— AIRS, IASI, and CrlIS all acquire 1 FOR in ~0.27 seconds

* Only static data files can be used
— One exception: model surface pressure.
— Cannot use output from model or other instrument data.
— Maximize information coming from AIRS radiances.

* Cloud clearing will be used to “correct” for cloud

contamination in the radiances.
— Amplification of Noise, A, is a function of scene 0.33 <A< =5
— Spectral Correlation of Noise is a function of scene

— IR retrievals must be available for all Earth conditions within
the assumptions/limitations of cloud clearing. 15
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Flow Diagram of NUCAPS Retrieval Steps

Climatological
First Guess for all
products
|

Microwave-only
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Note: Physical steps that are
repeated always use same startup
for that product -- but it benefits
from retrieval products and error
estimates from all other retrievals.




Summary of products from
(I7Z) AIRs, IASI and NUCAPS Algorithm

gas Range (cm™') | Precision | d.o.f. Interfering Gases Sensitivity
T 650-800 1.5K/km | 6-10 H20,03,N20 surface to
2375-2395 emissivity ~1 mb
H,O 1200-1600 15% 4-6 CH4, HNO3 surf to 300 mb
Cloud P, T, 700-900 25 mbar, | =2 C02, H20 surface to
fraction 1.5K, 5% tropopause
(O 1025-1050 10% 1+ H20,emissivity Lower strat.
co 2080-2200 15% ~ 1 H20,N20 Mid-trop
CH, 1250-1370 1.5% ~ 1 H20,HNO3,N20 Mid-trop
CO, 680-795 0.5% ~ 1 H20,03 Mid-trop
2375-2395 T(p)
Volcanic 1340-1380 | 50% ?7? <1 H20,HNO3 flag
SO,
HNO, 860-920 50% ?7? <1 emissivity Upper trop
1320-1330 H20,CH4,N20
N,O 1250-1315 5% ?7? <1 H20 Mid-trop
2180-2250 H20,CO

17



)

T
L ——

¢

=

Thoughts on Version 7

NASA Sounder Team Meeting

(NOTE: This presentation draws on some conclusions
shown in the previous presentation (CrIMSS EDR status)

Christopher Barnet
NOAA/NESDIS/STAR
Nov. 15, 2012



Objective
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* This is a philosophical presentation intended to
incite discussion on potential version 7 systems.

* Primary concern is that users may not be aware of subtle
characteristics of our products.

* Primary goals are (1)encourage community acceptance of the
AIRS products and (2) further exploit AIRS information content.

* Itis also possible that v7 could contain multiple product types
(e.g., one for climate and one for weather applications.

— My opinion of product attributes is not intended to
offend any algorithm developer

* Although, maybe it is more accurate to say | am trying to
offend all algorithm developers equally.

* This discussion is at a high level (i.e., no equations)

— But, obviously, a primary objective of this talk is to
discuss options in a mathematically rigorous manner.
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1DVAR versus AIRS Science Team Method

Simultaneous (1DVAR)

Sequential (AIRS method)

Solve all parameters simultaneously

Solve each state variable (e.g., T(p)), separately.

Error covariance includes only instrument model.

Error covariance is computed for all relevant state
variables that are held fixed in a given step. Retrieval
error covariance is propagated between steps.

Each parameter is derived from all channels used
(e.g., can derive T(p) from CO2, H20, O3, CO, ...
lines).

Each parameter is derived from the best channels for
that parameter (e.g., derive T(p) from COZ2 lines, q(p)
from H20 lines, etc.)

A-priori must be rather close to solution, since state
variable interactions can de-stabilize the solution.

A-priori can be less complex for sequential with well
selected channels.

Regularization must include a-priori statistics to allow
mathematics to separate the variables and stabilize
the solution.

Regularization can be reduced (smoothing terms) and
does not require a-priori statistics for most geophysical
regimes.

This method has large state matrices (all parameters)
and covariance matrices (all channels used).
Inversion of these large matrices is computationally
expensive.

State matrices are small (largest is 25 T(p)
parameters) and covariance matrices of the channels
subsets are quite small. Very fast algorithm.
Encourages using more channels.

Has never been done simultaneously with clouds,
emissivity(v), SW reflectivity, surface T, T(p), q(p),
03(p), CO(p), CH4(p), CO2(p), HNO3(p), N20(p)

In-situ validation and satellite inter-comparisons

indicate that this method is robust and stable. 20




Simplified Flow Diagram of the

Gia A AIRS Sci i
cience Team Algorithm
HplI7Z &
L
Climatological l |
First Guess for all
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. | IR Physical CH,(p) |
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X IR Physical T IR Physical T,
e(v), p(v) CCR e(v), p(v) Note: Physical retrieval steps that
T are repeated always use same
Improved Cloud I startup for that product, but it uses
Clearing, 1, R, | IR Physical T(p) | retrieval products and error
| J T estimates from all other retrievals.




Advantages of the AIRS Approach

e Sequential physical algorithm allows for a robust and stable
system with minimal prior information

— Sequential approach allows the more linear parameters to be
solved for first -- can make the algorithm very stable

— Can solve for all significant signals in the AIRS radiances.

* Error from previous steps are mapped into an error
estimate from interfering parameters

— A unique feature of this algorithm is that error estimates from
previous steps are mapped into subsequent steps

— The observation covariance (S, in Rodgers 2000) contains both
on- and off-diagonal terms composed of (dR/dX)-6x for all x’s
that are considered interference (including cloud clearing,
correlation due to apodization, etc.).

— Can be more robust than simultaneous retrieval because each
step uses optimal sampling of channels (i.e., low interference).



Advantages of optimal estimation

* O-E explicitly constrains the answer to lie within
expectation of reasonable answers

— Prior assumptions are always implicit in any retrieval approach

— Note that “reasonable” can be in the eye of the beholder and
sometimes that means a preference in the vertical null space.

* O-E explicitly derives the answer from prior information
— in this sense, 15t guess can only speed up convergence

— with enough iterations the same answer is usually achieved (up
to non-linearity of Jacobians)

* [nformation content (or errors) in retrieval state can be
partitioned between instrument and prior contributions

— Averaging kernels or error covariance have more value
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Graphical representation of O-E

Contour of the
prior PDF for a
3-D state, S,

-
-
-

-
-
(e

From (Rodgers 2000 World
Scientific Publishing) Fig. 2.4 (pg.26)

KTS 'K

2-D measurement (i.e., no

[ sensitivity to 37 dimension)
< B mapped into state space
:',_f.,

~3 Contour of the

for a optimal

retrieval.
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Statistical Operators

 Statistical retrievals are those that fit radiances, R,
directly to an ensemble of geophysical parameters, X

— X =1f(R), usually all radiances are used
— Neural net: X = A*a(R) + B*B(R) + C*y(R) + D*&(R)
— Linear regression: X = A*R
— Neural Net has more free degrees of freedom
e |Information can be derived from correlations

— e.g. when we used to have an ozone regression we found
that tropospheric ozone was being derived from AIRS
channels sensitive to tropopause height and carbon
monoxide

* Would we call this a "measurement" or is it an "index”
 We did learn from this — led to tropopause relative first guess



A Training of AIRS statistical operators
HIE (global versus regional)

* NOAA regression was trained globally and used
eigenvector regularization

— We wanted to constrain the degrees of freedom allowed
— 80 PCs with stratification into 4 view angle bins

* Neural net trained regionally, 200+ stratifications
— 2 ascending and descending

— 3 latitude bands (N.H., temperate, S.H.)
* Each has frozen/non-frozen ocean, 5-7 surface pressure over land
— 4 seasons
— Version 6 Neural Net has significantly more free degrees of
freedom to “fit” ECMWEF

 Therefore, the differences between NOAA linear
regression to MIT neural network approach can be do
with these choices in stratification, constraints, etc.



Training of Statistical Operators
(Geophysical Variance)

* Training must include every condition seen on Earth over
the lifetime of the mission
— For example, early in the AIRS mission we had issues with
volcanic SO2 from Etna
* volcanic SO2 was not in our early training (now it is)
» Statistical operator extrapolated to completely unrealistic profiles
* When itis good, it is very very good, but when it is bad ....

* Sub-resolved structure, being derived by correlations,
needs expansive training
— using ECMWE for training means we build in all ECMWEF errors
of the day
* e.g., ECMWF ozone in May 2012 has very large errors
 if this had been used for training of an ozone product it would have
caused erroneous ozone products

* | would argue that there can never be enough training

— Are there less obvious attributes of ECMWF that we have
inadvertently embedded into our product?



Some concerns with the statistical
operator have already been raised

e Vertical structure has been shown to be greater than
that which we can measure (Larrabee, Oct. 2011 AIRS

meeting)
— Statistical operator has ability to relate sub-resolved

structure with AIRS radiances.

— When the wrong structure is imposed in our first guess it is
not removed by our physical retrieval (to be discussed in a
few slides)

* Eric Maddy has shown that while Version 6 has
significantly better statistics for temperature and water
vapor profiles the cloud cleared radiance statistics are

identical to v5.9

— Implies that the improvement in T(p) RMS may be due to
sub-resolved vertical structures (i.e., improvements in our
null space, not our measurement)



— Some mathematical issues with AIRS
NS 7L physical retrieval methodology
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* We do not have a formal a-priori constraint.

— We do have an ad-hoc "background term"

* back in the day, | had convinced myself it provided the same functionality as a Roger's
background term (recursively)

* but this is not true, it does not equate to minimization of a cost function
— iterations are done w.r.t. previous state, with some % held back
* advantage: this retains the full vertical structure of first guess

* disadvantage: there is no constraint, physical retrieval believes first guess

— even if we characterized the statistical operator’s covariance that information would not be used by our
physical retrieval

*  We only map the diagonal component of the error covariance into down-
stream steps.

— Eric Maddy has shown there is a robust way to pass the full covariance from one
step to the next (Mar. 23 2007 AIRS meeting, my talk in session 6 and Eric Maddy
Apr. 27, 2011 session 6)

* The physical algorithm has become a “QC” of the statistical operator
— The goal is to select as many “good” cases and reject the “bad” regions

— Usually, the statistical operator is very good (better than we can measure) so that
“best” physical retrieval is one that does nothing
* Tendency to over-regularize the physical retrieval




AR So, what is the most desirable system?
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Potential User Community

If we fixed the “background term” then we must select a real prior state
(need both state and covariance)

— This can be non-trivial: for some products (or simultaneous “1DVAR-like”
covariance) the covariance could be very difficult to construct.

. 1 . . L . 1 .
mrar msam mlmm Aam Ak Aaiia srad i iaian madm A iAo . srm o saa s~

[ Ny [P S PR I [y |

Statistical (with covariance) Regional NWP
Climatology Process studies
Forecast Model X (w/o AIRS R) Global NWP for X, X=GFS,ECM,GMAQO,etc.

Re-analysis product X (w/o AIRS R)  Historical climate for X

O-E can also be done sequentially (and with cloud clearing) but for
meaningful error estimates (or Averaging Kernels) we will need to
improve the propagation of the error covariance downstream

And there is a choice between clear-FOV retrievals (low daily yield, very
good error characterization) or cloud clearing (high yield, complex error
characteristics). -



We could add more information content
(i.e., minimize dependence on prior information)

e MODIS radiances

— NOAA already has MODIS IR convolved to AIRS FOVs
* We also have AVHRR IR convolved to IASI (to be installed 2012)
e ... and will have VIIRS IR convolved to CrIS (to be installed 2014)

— It improves cloud clearing (part of our phase-2 IASI
system)

— Could potentially improve surface retrieval

* With degradation of AMSU and loss of HSB consider
using alternative microwave radiances

— CrIS/ATMS results demonstrate that the microwave
information is important, especially for moisture

— Eric has run ATMS+AIRS

* Quick look results imply that the increase of information content
may be more valuable than degradation of co-location

— We could employ NOAA AMSU over life of AIRS mission



Validation

* "extraordinary claims require extraordinary evidence" Carl
Sagan

— We should avoid making algorithm choices using the same data
sets used in “training” of algorithm or QC components.

— We should partition improvements into those from null-space and
those from physical measurement concepts

* Should the goal be to use IR everywhere?

— Cloud clearing is known to fail in regions of high moisture or
surface variability and has large non-Gaussian errors when it fails.

— There is a trade-off between quality and robustness as scenes
becomes more complicated.

— CrIMSS metric is to have a retrieval everywhere

* We look at both MW-only and IR+MW rets and decide where the IR
retrievals have better performance.

* To do this we must look at both accepted and rejected IR retrievals
* We also require validation of a full profile (from TOA to surface).



N Backup: O-E vs AIRS equations

2_!'7'[ (somewhat simplified to make them look similar)

- | X = Xp KN Ky O KL NG
O-E pivoting off of prior state: {szs_ R,(X'~ 1)+Kw (X'L— XJAH
7 = (R = R (X570 Nk (R — R (X7

Minimizes the cost function: , 7 :
+ (X;,—l _ XJA) Hom b (X?—l — XA)

JsJ

i i—1 T — =]

Equivalent to pivoting offof % = X; + K Nos Knj+ Ci )
. . . T — obs 1—1 -1 i—1

the previous iteration: K N (Rn — Ro(X'7Y) = G- (X7 = X))

i =4 T i , 1t T =4
X.] T X] _l_ [K]an ) Nnan ) Kn’J + HJ’J} ) K]’n ) Nn,n )

AIRS Science Team approach: {szs — R, (XY — @;—1}
o=t =
H is a smoothing constraint Wil = KL (Xi0) — X
and the background term is " e ’
derived with respect to Xi(0) = Xi' + [KY Ny} K.; -KY -NL.
unregularized (LSQ) retrieval ! ’ RoY — };;(X?_’T} S
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e Suggested Rules for
Engagement

— suspend judgment

— no speeches (1 minute
rule)

— one person speaks at a
time (one idea at a time)

— no killer phrases

— hitchhiking is okay . \<®

— be creative

All day long, a tough gang of astrophysicists
would monopolize the telescope and intimidate
the other researchers.



